Circuits Tool Box (Conclusions for Series and Parallel Circuit Lab)

Type of	Path of	Voltage	Current	Equivalent Resistance	Type of
Circuit	Electron	V	Ι	R_{eq}	Circuit
Series	No Choice	Adds	Same	$R_{eq} = R_1 + R_2 + R_3$	Series
Parallel	Choice	Same for each branch	Adds for each branch	$1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3$	Parallel

Best way to do Parallel R_{eq} is take the resisters 2 at a time and do POS (Product over Sum)

 $R_1R_2/(R_1 + R_2)$

$\mathbf{V} = \mathbf{I}\mathbf{R}$	Voltage = Current * Resistance	(Ohm's Law)	R is slope of Voltage-Current graph
$\mathbf{P} = \mathbf{IV}$	Power = Current * Voltage (also]	$\mathbf{P} = \mathbf{I}^2 * \mathbf{R})$	P is area of rectangle of Voltage-Current graph

Current = Brightness = Power (for a set voltage)Powers of Resistances ALWAYS ADDS to = Power of Voltage Source

Resistance in wire is assumed zero. However in reality, the <u>longer</u> the wire is the <u>more</u> resistance it has. Also, the <u>hotter</u> a wire is the <u>more</u> resistance it has.

Also: **Ammeters** measure <u>Current</u> going <u>THROUGH</u> wires and circuit elements are ALWAYS hooked in <u>SERIES</u> and always have <u>extremely LOW RESISTANCE</u>. You have to <u>BREAK</u> a circuit and <u>INSERT</u> an <u>Ammeter</u>. Symbol is:

Voltmeters measure <u>Voltage ACROSS</u> wires and circuit elements and are ALWAYS hooked in <u>Parallel</u> and always have <u>extremely HIGH RESISTANCE</u>. You <u>NEVER BREAK</u> a circuit and <u>INSERT</u> an <u>Ammeter</u>. Symbol is: